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1
STOCHASTIC DELAY PLASTICITY

CROSS-REFERENCE TO RELATED
APPLICATION

The present application claims the benefit of U.S. Provi-
sional Patent Application No. 61/943,165, filed on Feb. 21,
2014 and titled “STOCHASTIC DELAY PLASTICITY,” the
disclosure of which is expressly incorporated by reference
herein in its entirety.

BACKGROUND

1. Field

Certain aspects of the present disclosure generally relate to
neural system engineering and, more particularly, to systems
and methods for designing and operating a neural network
using stochastic delay plasticity.

2. Background

An artificial neural network, which may comprise an inter-
connected group of artificial neurons (i.e., neuron models), is
a computational device or represents a method to be per-
formed by a computational device. Artificial neural networks
may have corresponding structure and/or function in biologi-
cal neural networks. However, artificial neural networks may
provide innovative and useful computational techniques for
certain applications in which traditional computational tech-
niques are cumbersome, impractical, or inadequate. Because
artificial neural networks can infer a function from observa-
tions, such networks are particularly useful in applications
where the complexity of the task or data makes the design of
the function by conventional techniques burdensome.

Spike-timing dependent delay plasticity is a technique to
alter the time at which incoming information from a presyn-
aptic neuron arrives at or is updated in a postsynaptic neuron.
In many cases, the function of delay plasticity is to cause
temporally separated events to arrive at the postsynaptic neu-
ron at the same time, which increases the likelihood that the
neuron will fire an action potential. Delay plasticity is typi-
cally implemented by changing the delay of the synapse (or
connection) between pairs of pre- and postsynaptic neurons.
Spike-timing dependent delay plasticity is a special case of
delay plasticity where the change in delay is determined by
the time difference between the pre- and post-synaptic spike
times. In past implementations, the delay change was deter-
ministic; meaning that for a given time difference between the
pre- and postsynaptic neurons the delay change was a pre-
determined value. Implementations typically rely on a posi-
tive delay change when the pre-fires before the postsynaptic
neuron and a negative delay change in the reverse case. While
this approach works well when the postsynaptic neuron fires
in the middle of'a group of presynaptic spikes, invoking both
positive and negative delay changes, when the postsynaptic
spike fires after a group of presynaptic spikes, only positive
delay changes are invoked. This produces ever increasing
delays that can saturate or add unnecessary delay to the sys-
tem (e.g., producing synaptic delays of 25, 27, and 29 when
delays of 1, 3, and 5 would provide the same functionality).
This gratuitous delay occurs because there is no mechanism
to minimize the overall delay after the presynaptic spikes
have been clustered together.

SUMMARY

In an aspect of the present disclosure, a method of operat-
ing a spiking neural network having neurons coupled together
with a synapse is disclosed. The method includes monitoring
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a timing of a presynaptic spike and monitoring a timing of a
postsynaptic spike. The method also includes determining a
time difference between the postsynaptic spike and the
presynaptic spike. The method further includes calculating a
stochastic update of a delay for the synapse based on the time
difference.

In another aspect of the present disclosure, an apparatus for
operating a spiking neural network having neurons coupled
together with a synapse is disclosed. The apparatus has a
memory and at least one processor coupled to the memory.
The processor(s) is configured to monitor a timing of a
presynaptic spike and monitor a timing of a postsynaptic
spike. The processor(s) is also configured to determine a time
difference between the postsynaptic spike and the presynap-
tic spike. The processor(s) is further configured to calculate a
stochastic update of a delay for the synapse based on the time
difference.

Inyetanother aspect of the present disclosure, an apparatus
for operating a spiking neural network having neurons
coupled together with a synapse is disclosed. The apparatus
has means for monitoring a timing of a presynaptic spike and
monitoring a timing of a postsynaptic spike. The apparatus
also has means for determining a time difference between the
postsynaptic spike and the presynaptic spike. The apparatus
further has means for calculating a stochastic update of a
delay for the synapse based on the time difference.

In still another aspect of the present disclosure, a computer
program product for operating a spiking neural network hav-
ing neurons coupled together with a synapse is disclosed. The
computer program product includes a non-transitory com-
puter readable medium having encoded thereon program
code. The program code includes program code to monitor a
timing of a presynaptic spike and program code to monitor a
timing of a postsynaptic spike. The program code also
includes program code to determine a time difference
between the postsynaptic spike and the presynaptic spike.
The program code further includes program code to calculate
a stochastic update of a delay for the synapse based on the
time difference.

This has outlined, rather broadly, the features and technical
advantages of the present disclosure in order that the detailed
description that follows may be better understood. Additional
features and advantages of the disclosure will be described
below. It should be appreciated by those skilled in the art that
this disclosure may be readily utilized as a basis for modify-
ing or designing other structures for carrying out the same
purposes of the present disclosure. It should also be realized
by those skilled in the art that such equivalent constructions
do not depart from the teachings of the disclosure as set forth
in the appended claims. The novel features, which are
believed to be characteristic of the disclosure, both as to its
organization and method of operation, together with further
objects and advantages, will be better understood from the
following description when considered in connection with
the accompanying figures. It is to be expressly understood,
however, that each of the figures is provided for the purpose of
illustration and description only and is not intended as a
definition of the limits of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The features, nature, and advantages of the present disclo-
sure will become more apparent from the detailed description
set forth below when taken in conjunction with the drawings
in which like reference characters identify correspondingly
throughout.
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FIG. 1 illustrates an example network of neurons in accor-
dance with certain aspects of the present disclosure.

FIG. 2 illustrates an example of a processing unit (neuron)
of a computational network (neural system or neural net-
work) in accordance with certain aspects of the present dis-
closure.

FIG. 3 illustrates an example of spike-timing dependent
plasticity (STDP) curve in accordance with certain aspects of
the present disclosure.

FIG. 4 illustrates an example of a positive regime and a
negative regime for defining behavior of a neuron model in
accordance with certain aspects of the present disclosure.

FIG. 5 illustrates an example implementation of designing
aneural network using a general-purpose processor in accor-
dance with certain aspects of the present disclosure.

FIG. 6 illustrates an example implementation of designing
a neural network where a memory may be interfaced with
individual distributed processing units in accordance with
certain aspects of the present disclosure.

FIG. 7 illustrates an example implementation of designing
a neural network based on distributed memories and distrib-
uted processing units in accordance with certain aspects of
the present disclosure.

FIG. 8 illustrates an example implementation of a neural
network in accordance with certain aspects of the present
disclosure.

FIGS. 9A-9B are diagrams illustrating exemplary stochas-
tic delay plasticity curves in accordance with aspects of the
present disclosure.

FIG. 10 is a block diagram illustrating a method for oper-
ating a neural network in accordance with an aspect of the
present disclosure.

DETAILED DESCRIPTION

The detailed description set forth below, in connection with
the appended drawings, is intended as a description of various
configurations and is not intended to represent the only con-
figurations in which the concepts described herein may be
practiced. The detailed description includes specific details
for the purpose of providing a thorough understanding of the
various concepts. However, it will be apparent to those skilled
in the art that these concepts may be practiced without these
specific details. In some instances, well-known structures and
components are shown in block diagram form in order to
avoid obscuring such concepts.

Based on the teachings, one skilled in the art should appre-
ciate that the scope of the disclosure is intended to cover any
aspect of the disclosure, whether implemented independently
of or combined with any other aspect of the disclosure. For
example, an apparatus may be implemented or a method may
be practiced using any number of the aspects set forth. In
addition, the scope of the disclosure is intended to cover such
an apparatus or method practiced using other structure, func-
tionality, or structure and functionality in addition to or other
than the various aspects of the disclosure set forth. It should
be understood that any aspect of the disclosure disclosed may
be embodied by one or more elements of a claim.

The word “exemplary” is used herein to mean “serving as
an example, instance, or illustration.” Any aspect described
herein as “exemplary” is not necessarily to be construed as
preferred or advantageous over other aspects.

Although particular aspects are described herein, many
variations and permutations of these aspects fall within the
scope of the disclosure. Although some benefits and advan-
tages of the preferred aspects are mentioned, the scope of the
disclosure is not intended to be limited to particular benefits,
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uses or objectives. Rather, aspects of the disclosure are
intended to be broadly applicable to different technologies,
system configurations, networks and protocols, some of
which are illustrated by way of example in the figures and in
the following description of the preferred aspects. The
detailed description and drawings are merely illustrative of
the disclosure rather than limiting, the scope of the disclosure
being defined by the appended claims and equivalents
thereof.

An Example Neural System, Training and Operation

FIG. 1 illustrates an example artificial neural system 100
with multiple levels of neurons in accordance with certain
aspects of the present disclosure. The neural system 100 may
have a level of neurons 102 connected to another level of
neurons 106 through a network of synaptic connections 104
(i.e., feed-forward connections). For simplicity, only two lev-
els of neurons are illustrated in FIG. 1, although fewer or
more levels of neurons may exist in a neural system. It should
be noted that some of the neurons may connect to other
neurons of the same layer through lateral connections. Fur-
thermore, some of the neurons may connect back to a neuron
of'a previous layer through feedback connections.

As illustrated in FIG. 1, each neuron in the level 102 may
receive an input signal 108 that may be generated by neurons
of'a previous level (not shown in FIG. 1). The signal 108 may
represent an input current of the level 102 neuron. This cur-
rent may be accumulated on the neuron membrane to charge
amembrane potential. When the membrane potential reaches
its threshold value, the neuron may fire and generate an output
spike to be transferred to the next level of neurons (e.g., the
level 106). In some modeling approaches, the neuron may
continuously transfer a signal to the next level of neurons.
This signal is typically a function of the membrane potential.
Such behavior can be emulated or simulated in hardware
and/or software, including analog and digital implementa-
tions such as those described below.

In biological neurons, the output spike generated when a
neuron fires is referred to as an action potential. This electrical
signal is a relatively rapid, transient, nerve impulse, having an
amplitude of roughly 100 mV and a duration of about 1 ms. In
a particular embodiment of a neural system having a series of
connected neurons (e.g., the transfer of spikes from one level
of neurons to another in FIG. 1), every action potential has
basically the same amplitude and duration, and thus, the
information in the signal may be represented only by the
frequency and number of spikes, or the time of spikes, rather
than by the amplitude. The information carried by an action
potential may be determined by the spike, the neuron that
spiked, and the time of the spike relative to other spike or
spikes. The importance of the spike may be determined by a
weight applied to a connection between neurons, as explained
below.

The transfer of spikes from one level of neurons to another
may be achieved through the network of synaptic connections
(or simply “synapses”) 104, as illustrated in FIG. 1. Relative
to the synapses 104, neurons of level 102 may be considered
presynaptic neurons and neurons of level 106 may be consid-
ered postsynaptic neurons. The synapses 104 may receive
output signals (i.e., spikes) from the level 102 neurons and
scale those signals according to adjustable synaptic weights
w, @D w O where P is a total number of synaptic
connections between the neurons of levels 102 and 106 and i
is an indicator of the neuron level. In the example of FIG. 1,
i represents neuron level 102 and i+1 represents neuron level
106. Further, the scaled signals may be combined as an input
signal of each neuron in the level 106. Every neuron in the
level 106 may generate output spikes 110 based on the cor-
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responding combined input signal. The output spikes 110
may be transferred to another level of neurons using another
network of synaptic connections (not shown in FIG. 1).

Biological synapses can mediate either excitatory or
inhibitory (hyperpolarizing) actions in postsynaptic neurons
and can also serve to amplify neuronal signals. Excitatory
signals depolarize the membrane potential (i.e., increase the
membrane potential with respect to the resting potential). If
enough excitatory signals are received within a certain time
period to depolarize the membrane potential above a thresh-
old, an action potential occurs in the postsynaptic neuron. In
contrast, inhibitory signals generally hyperpolarize (i.e.,
lower) the membrane potential. Inhibitory signals, if strong
enough, can counteract the sum of excitatory signals and
prevent the membrane potential from reaching a threshold. In
addition to counteracting synaptic excitation, synaptic inhi-
bition can exert powerful control over spontaneously active
neurons. A spontaneously active neuron refers to a neuron
that spikes without further input, for example due to its
dynamics or a feedback. By suppressing the spontaneous
generation of action potentials in these neurons, synaptic
inhibition can shape the pattern of firing in a neuron, which is
generally referred to as sculpturing. The various synapses 104
may act as any combination of excitatory or inhibitory syn-
apses, depending on the behavior desired.

The neural system 100 may be emulated by a general
purpose processor, a digital signal processor (DSP), an appli-
cation specific integrated circuit (ASIC), a field program-
mable gate array (FPGA) or other programmable logic device
(PLD), discrete gate or transistor logic, discrete hardware
components, a software module executed by a processor, or
any combination thereof. The neural system 100 may be
utilized in a large range of applications, such as image and
pattern recognition, machine learning, motor control, and
alike. Each neuron in the neural system 100 may be imple-
mented as a neuron circuit. The neuron membrane charged to
the threshold value initiating the output spike may be imple-
mented, for example, as a capacitor that integrates an electri-
cal current flowing through it.

In an aspect, the capacitor may be eliminated as the elec-
trical current integrating device of the neuron circuit, and a
smaller memristor element may be used in its place. This
approach may be applied in neuron circuits, as well as in
various other applications where bulky capacitors are utilized
as electrical current integrators. In addition, each of the syn-
apses 104 may be implemented based on a memristor ele-
ment, where synaptic weight changes may relate to changes
of the memristor resistance. With nanometer feature-sized
memristors, the area of a neuron circuit and synapses may be
substantially reduced, which may make implementation of a
large-scale neural system hardware implementation more
practical.

Functionality of a neural processor that emulates the neural
system 100 may depend on weights of synaptic connections,
which may control strengths of connections between neu-
rons. The synaptic weights may be stored in a non-volatile
memory in order to preserve functionality of the processor
after being powered down. In an aspect, the synaptic weight
memory may be implemented on a separate external chip
from the main neural processor chip. The synaptic weight
memory may be packaged separately from the neural proces-
sor chip as a replaceable memory card. This may provide
diverse functionalities to the neural processor, where a par-
ticular functionality may be based on synaptic weights stored
in a memory card currently attached to the neural processor.

FIG. 2 illustrates an exemplary diagram 200 of a process-
ing unit (e.g., a neuron or neuron circuit) 202 of a computa-
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tional network (e.g., a neural system or a neural network) in
accordance with certain aspects of the present disclosure. For
example, the neuron 202 may correspond to any of the neu-
rons of levels 102 and 106 from FIG. 1. The neuron 202 may
receive multiple input signals 204 ,-204,,, which may be sig-
nals external to the neural system, or signals generated by
other neurons of the same neural system, or both. The input
signal may be a current, a conductance, a voltage, a real-
valued, and/or a complex-valued. The input signal may com-
prise a numerical value with a fixed-point or a floating-point
representation. These input signals may be delivered to the
neuron 202 through synaptic connections that scale the sig-
nals according to adjustable synaptic weights 206,-206,,
(W,-W,), where N may be a total number of input connec-
tions of the neuron 202.

The neuron 202 may combine the scaled input signals and
use the combined scaled inputs to generate an output signal
208 (i.e., a signal Y). The output signal 208 may be a current,
a conductance, a voltage, a real-valued and/or a complex-
valued. The output signal may be a numerical value with a
fixed-point or a floating-point representation. The output sig-
nal 208 may be then transferred as an input signal to other
neurons of the same neural system, or as an input signal to the
same neuron 202, or as an output of the neural system.

The processing unit (neuron) 202 may be emulated by an
electrical circuit, and its input and output connections may be
emulated by electrical connections with synaptic circuits. The
processing unit 202 and its input and output connections may
also be emulated by a software code. The processing unit 202
may also be emulated by an electric circuit, whereas its input
and output connections may be emulated by a software code.
In an aspect, the processing unit 202 in the computational
network may be an analog electrical circuit. In another aspect,
the processing unit 202 may be a digital electrical circuit. In
yet another aspect, the processing unit 202 may be a mixed-
signal electrical circuit with both analog and digital compo-
nents. The computational network may include processing
units in any of the aforementioned forms. The computational
network (neural system or neural network) using such pro-
cessing units may be utilized in a large range of applications,
such as image and pattern recognition, machine learning,
motor control, and the like.

During the course of training a neural network, synaptic
weights (e.g., the weights w, ™ . w, ™ from FIG. 1
and/or the weights 206,-206,, from FIG. 2) may be initialized
with random values and increased or decreased according to
a learning rule. Those skilled in the art will appreciate that
examples of the learning rule include, but are not limited to
the spike-timing-dependent plasticity (STDP) learning rule,
the Hebb rule, the Oja rule, the Bienenstock-Copper-Munro
(BCM) rule, etc. In certain aspects, the weights may settle or
converge to one of two values (i.e., a bimodal distribution of
weights). This effect can be utilized to reduce the number of
bits for each synaptic weight, increase the speed of reading
and writing from/to a memory storing the synaptic weights,
and to reduce power and/or processor consumption of the
synaptic memory.

Synapse Type

In hardware and software models of neural networks, the
processing of synapse related functions can be based on syn-
aptic type. Synapse types may be non-plastic synapses (no
changes of weight and delay), plastic synapses (weight may
change), structural delay plastic synapses (weight and delay
may change), fully plastic synapses (weight, delay and con-
nectivity may change), and variations thereupon (e.g., delay
may change, but no change in weight or connectivity). The
advantage of multiple types is that processing can be subdi-
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vided. For example, non-plastic synapses may not utilize
plasticity functions to be executed (or waiting for such func-
tions to complete). Similarly, delay and weight plasticity may
be subdivided into operations that may operate together or
separately, in sequence or in parallel. Different types of syn-
apses may have different lookup tables or formulas and
parameters for each of the different plasticity types that apply.
Thus, the methods would access the relevant tables, formulas,
or parameters for the synapse’s type.

There are further implications of the fact that spike-timing
dependent structural plasticity may be executed indepen-
dently of synaptic plasticity. Structural plasticity may be
executed even if there is no change to weight magnitude (e.g.,
if the weight has reached a minimum or maximum value, or it
is not changed due to some other reason) s structural plasticity
(i.e., an amount of delay change) may be a direct function of
pre-post spike time difference. Alternatively, structural plas-
ticity may be set as a function of the weight change amount or
based on conditions relating to bounds of the weights or
weight changes. For example, a synapse delay may change
only when a weight change occurs or if weights reach zero but
not if they are at a maximum value. However, it may be
advantageous to have independent functions so that these
processes can be parallelized reducing the number and over-
lap of memory accesses.

Determination of Synaptic Plasticity

Neuroplasticity (or simply “plasticity”) is the capacity of
neurons and neural networks in the brain to change their
synaptic connections and behavior in response to new infor-
mation, sensory stimulation, development, damage, or dys-
function. Plasticity is important to learning and memory in
biology, as well as for computational neuroscience and neural
networks. Various forms of plasticity have been studied, such
as synaptic plasticity (e.g., according to the Hebbian theory),
spike-timing-dependent plasticity (STDP), non-synaptic
plasticity, activity-dependent plasticity, structural plasticity
and homeostatic plasticity.

STDP is a learning process that adjusts the strength of
synaptic connections between neurons. The connection
strengths are adjusted based on the relative timing of a par-
ticular neuron’s output and received input spikes (i.e., action
potentials). Under the STDP process, long-term potentiation
(LTP)may occur if an input spike to a certain neuron tends, on
average, to occur immediately before that neuron’s output
spike. Then, that particular input is made somewhat stronger.
On the other hand, long-term depression (LTD) may occur if
an input spike tends, on average, to occur immediately after
an output spike. Then, that particular input is made somewhat
weaker, and hence the name “spike-timing-dependent plas-
ticity.”” Consequently, inputs that might be the cause of the
postsynaptic neuron’s excitation are made even more likely to
contribute in the future, whereas inputs that are not the cause
of'the postsynaptic spike are made less likely to contribute in
the future. The process continues until a subset of the initial
set of connections remains, while the influence of all others is
reduced to an insignificant level.

Because aneuron generally produces an output spike when
many of its inputs occur within a brief period (i.e., being
cumulative sufficient to cause the output), the subset of inputs
that typically remains includes those that tended to be corre-
lated in time. In addition, because the inputs that occur before
the output spike are strengthened, the inputs that provide the
earliest sufficiently cumulative indication of correlation will
eventually become the final input to the neuron.

The STDP learning rule may effectively adapt a synaptic
weight of a synapse connecting a presynaptic neuron to a
postsynaptic neuron as a function of time difference between
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spike timet,,, of the presynaptic neuron and spike timet,,,,, of
the postsynaptic neuron (i.e., t=t,,~t,,.). A typical formula-
tion of the STDP is to increase the synaptic weight (i.e.,
potentiate the synapse) if the time difference is positive (the
presynaptic neuron fires before the postsynaptic neuron), and
decrease the synaptic weight (i.e., depress the synapse) if the
time difference is negative (the postsynaptic neuron fires
before the presynaptic neuron).

In the STDP process, a change of the synaptic weight over
time may be typically achieved using an exponential decay, as
given by:

a e 1pu >0 (1
Ao = aet <0

where k, and k_t,,,,,, are time constants for positive and
negative time difference, respectively, a, and a_ are corre-
sponding scaling magnitudes, and p is an offset that may be
applied to the positive time difference and/or the negative
time difference.

FIG. 3 illustrates an exemplary diagram 300 of a synaptic
weight change as a function of relative timing of presynaptic
and postsynaptic spikes in accordance with the STDP. If a
presynaptic neuron fires before a postsynaptic neuron, then a
corresponding synaptic weight may be increased, as illus-
trated in a portion 302 of the graph 300. This weight increase
can be referred to as an LTP of the synapse. It can be observed
from the graph portion 302 that the amount of LTP may
decrease roughly exponentially as a function of the difference
between presynaptic and postsynaptic spike times. The
reverse order of firing may reduce the synaptic weight, as
illustrated in a portion 304 of the graph 300, causing an LTD
of the synapse.

As illustrated in the graph 300 in FIG. 3, a negative offset
pmay be applied to the TP (causal) portion 302 of the STDP
graph. A point of cross-over 306 of the x-axis (y=0) may be
configured to coincide with the maximum time lag for con-
sidering correlation for causal inputs from layer i-1. In the
case of a frame-based input (i.e., an input that is in the form of
a frame of a particular duration comprising spikes or pulses),
the offset value u can be computed to reflect the frame bound-
ary. A first input spike (pulse) in the frame may be considered
to decay over time either as modeled by a postsynaptic poten-
tial directly or in terms of the effect on neural state. If a second
input spike (pulse) in the frame is considered correlated or
relevant to a particular time frame, then the relevant times
before and after the frame may be separated at that time frame
boundary and treated differently in plasticity terms by offset-
ting one or more parts of the STDP curve such that the value
in the relevant times may be different (e.g., negative for
greater than one frame and positive for less than one frame).
For example, the negative offset u may be set to offset LTP
such that the curve actually goes below zero at a pre-post time
greater than the frame time and it is thus part of LTD instead
of LTP.

Neuron Models and Operation

There are some general principles for designing a useful
spiking neuron model. A good neuron model may have rich
potential behavior in terms of two computational regimes:
coincidence detection and functional computation. More-
over, a good neuron model should have two elements to allow
temporal coding: arrival time of inputs affects output time and
coincidence detection can have a narrow time window.
Finally, to be computationally attractive, a good neuron
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model may have a closed-form solution in continuous time
and stable behavior including near attractors and saddle
points. In other words, a useful neuron model is one that is
practical and that can be used to model rich, realistic and
biologically-consistent behaviors, as well as be used to both
engineer and reverse engineer neural circuits.

A neuron model may depend on events, such as an input
arrival, output spike or other event whether internal or exter-
nal. To achieve a rich behavioral repertoire, a state machine
that can exhibit complex behaviors may be desired. If the
occurrence of an event itself, separate from the input contri-
bution (if any), can influence the state machine and constrain
dynamics subsequent to the event, then the future state of the
system is not only a function of a state and input, but rather a
function of a state, event, and input.

In an aspect, a neuron n may be modeled as a spiking
leaky-integrate-and-fire neuron with a membrane voltage
v, (1) governed by the following dynamics:

dv, (1)
dr

@

= V(D) + B Wnpn(t = A,

where o and f§ are parameters, w,, , is a synaptic weight for
the synapse connecting a presynaptic neuron m to a postsyn-
aptic neuron n, andy,, (t) is the spiking output of the neuron m
that may be delayed by dendritic or axonal delay according to
At, , until arrival at the neuron n’s soma.

It should be noted that there is a delay from the time when
sufficient input to a postsynaptic neuron is established until
the time when the postsynaptic neuron actually fires. In a
dynamic spiking neuron model, such as Izhikevich’s simple
model, a time delay may be incurred if there is a difference
between a depolarization threshold v, and a peak spike volt-
age V.. For example, in the simple model, neuron soma
dynamics can be governed by the pair of differential equa-
tions for voltage and recovery, i.e.:

dv c 3)
_y—(‘(v_vr)(v_vr)_u“")/ 5
4)

Y
E_a( (v —vy) —u).

where v is a membrane potential, u is a membrane recovery
variable, k is a parameter that describes time scale of the
membrane potential v, a is a parameter that describes time
scale of the recovery variable u, b is a parameter that describes
sensitivity of the recovery variable u to the sub-threshold
fluctuations of the membrane potential v, v, is a membrane
resting potential, I is a synaptic current, and C is a mem-
brane’s capacitance. In accordance with this model, the neu-
ron is defined to spike when v>v ..
Hunzinger Cold Model

The Hunzinger Cold neuron model is a minimal dual-
regime spiking linear dynamical model that can reproduce a
rich variety of neural behaviors. The model’s one- or two-
dimensional linear dynamics can have two regimes, wherein
the time constant (and coupling) can depend on the regime. In
the sub-threshold regime, the time constant, negative by con-
vention, represents leaky channel dynamics generally acting
to return a cell to rest in a biologically-consistent linear fash-
ion. The time constant in the supra-threshold regime, positive
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by convention, reflects anti-leaky channel dynamics gener-
ally driving a cell to spike while incurring latency in spike-
generation.

As illustrated in FIG. 4, the dynamics of the model 400 may
be divided into two (or more) regimes. These regimes may be
called the negative regime 402 (also interchangeably referred
to as the leaky-integrate-and-fire (LIF) regime, not to be
confused with the LIF neuron model) and the positive regime
404 (also interchangeably referred to as the anti-leaky-inte-
grate-and-fire (ALIF) regime, not to be confused with the
ALIF neuron model). In the negative regime 402, the state
tends toward rest (v_) at the time of a future event. In this
negative regime, the model generally exhibits temporal input
detection properties and other sub-threshold behavior. In the
positive regime 404, the state tends toward a spiking event
(v,)- Inthis positive regime, the model exhibits computational
properties, such as incurring a latency to spike depending on
subsequent input events. Formulation of dynamics in terms of
events and separation of the dynamics into these two regimes
are fundamental characteristics of the model.

Linear dual-regime bi-dimensional dynamics (for states v
and u) may be defined by convention as:

dv (5)
Togr TVt

‘z'ﬂ u+r ©)

“dr ~

where q,, and r are the linear transformation variables for
coupling.

The symbol p is used herein to denote the dynamics regime
with the convention to replace the symbol p with the sign “-”

r “+” for the negative and positive regimes, respectively,
when discussing or expressing a relation for a specific regime.

The model state is defined by a membrane potential (volt-
age) v and recovery current u. In basic form, the regime is
essentially determined by the model state. There are subtle,
but important aspects of the precise and general definition, but
for the moment, consider the model to be in the positive
regime 404 if the voltage v is above a threshold (v,) and
otherwise in the negative regime 402.

The regime-dependent time constants include t_ which is
the negative regime time constant, andt, which is the positive
regime time constant. The recovery current time constant T, is
typically independent of regime. For convenience, the nega-
tive regime time constant t_ is typically specified as a nega-
tive quantity to reflect decay so that the same expression for
voltage evolution may be used as for the positive regime in
which the exponent and T, will generally be positive, as will
bew,.

The dynamics of the two state elements may be coupled at
events by transformations offsetting the states from their null-
clines, where the transformation variables are:

M

qp:—'l:pﬁu—vp

r=0(v+€)

®)

where d, €, f and v_, v, are parameters. The two values for v,
are the base for reference voltages for the two regimes. The
parameter v_ is the base voltage for the negative regime, and
the membrane potential will generally decay toward v_ in the
negative regime. The parameter v, is the base voltage for the
positive regime, and the membrane potential will generally
tend away from v, in the positive regime.

The null-clines for v and u are given by the negative of the
transformation variables q,, and r, respectively. The parameter
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d is a scale factor controlling the slope of the u null-cline. The
parameter s is typically set equal to —v_. The parameter f} is a
resistance value controlling the slope of the v null-clines in
both regimes. The T, time-constant parameters control not
only the exponential decays, but also the null-cline slopes in
each regime separately.

The model may be defined to spike when the voltage v
reaches a value v,. Subsequently, the state may be reset at a
reset event (which may be one and the same as the spike
event):

v=y_ ©)]

u=u+Au (10)

where v_ and Au are parameters. The reset voltage v_ is
typically set to v_.

By a principle of momentary coupling, a closed form solu-
tion is possible not only for state (and with a single exponen-
tial term), but also for the time to reach a particular state. The
close form state solutions are:

o an
V(e +AD = (v(0) + gp)eF — g,

Y 12
u(t+ A = (D) +re w —r

Therefore, the model state may be updated only upon
events, such as an input (presynaptic spike) or output
(postsynaptic spike). Operations may also be performed at
any particular time (whether or not there is input or output).

Moreover, by the momentary coupling principle, the time
of'a postsynaptic spike may be anticipated so the time to reach
aparticular state may be determined in advance without itera-
tive techniques or Numerical Methods (e.g., the Euler
numerical method). Given a prior voltage state v, the time
delay until voltage state v,is reached is given by:

Vi +4p
Vo+qp

Ar=1plog a3

Ifaspike is defined as occurring at the time the voltage state
v reaches v, then the closed-form solution for the amount of
time, or relative delay, until a spike occurs as measured from
the time that the voltage is at a given state v is:

14

Vs + . R
7, log s if v> 79,
Az = v+gy

co otherwise

where ¥, is typically set to parameter v,, although other
variations may be possible.

The above definitions of the model dynamics depend on
whether the model is in the positive or negative regime. As
mentioned, the coupling and the regime p may be computed
upon events. For purposes of state propagation, the regime
and coupling (transformation) variables may be defined
based on the state at the time of the last (prior) event. For
purposes of subsequently anticipating spike output time, the
regime and coupling variable may be defined based on the
state at the time of the next (current) event.

There are several possible implementations of the Cold
model, and executing the simulation, emulation or model in
time. This includes, for example, event-update, step-event

10

15

20

25

30

40

50

55

12

update, and step-update modes. An event update is an update
where states are updated based on events or “event update” (at
particular moments). A step update is an update when the
model is updated at intervals (e.g., 1 ms). This does not
necessarily utilize iterative methods or Numerical methods.
An event-based implementation is also possible at a limited
time resolution in a step-based simulator by only updating the
model if an event occurs at or between steps or by “step-
event” update.

Stochastic Delay Plasticity

Aspects of the present disclosure are directed to operating
a neural network using stochastic delay plasticity (SDP).
Delay plasticity allows the synaptic delay between two neu-
rons to be modified or trained in order to achieve a specific
functionality. One function that delay plasticity performs is to
take a group of spikes occurring at different times and delay
the earlier spikes such that all of the postsynaptic potentials
arrive at the postsynaptic cell at the same time. In essence,
delay plasticity can align a temporally diverse spike pattern.

Indelay plasticity, a curve may specify an amount the delay
should be changed as a function of a time difference between
a presynaptic and postsynaptic spike. While this approach
may work when the postsynaptic neuron fires in the middle of
a group of presynaptic spikes, invoking both positive and
negative delay changes, when the postsynaptic spike fires
after a group of presynaptic spikes, only positive delay
changes are invoked. Thus, this approach may produce ever
increasing delays that can saturate or add unnecessary delay
to the system (e.g., producing synaptic delays of 25, 27, and
29 when delays of 1, 3, and 5 would provide the same func-
tionality). This gratuitous delay may occur because there is no
mechanism to reduce or minimize the overall delay after the
presynaptic spikes have been clustered together.

In accordance with aspects of the present disclosure, a
fixed delay change may be used in which the sign of the delay
change is probabilistically altered based on the time differ-
ence between the presynaptic and postsynaptic spikes. To
implement stochastic delay plasticity, a curve defining a non-
zero probability of choosing a positive (+) change or a nega-
tive (-) change for every post-pre spike time difference may
be constructed. For example, if the postsynaptic cell spikes 5
ms after the presynaptic cell, there could be a 0.3 probability
of'increasing, a 0.1 probability of decreasing and a 0.6 prob-
ability of not changing the synaptic delay by a value of one.
One difference between stochastic delay plasticity and other
implementations of delay plasticity is that for the same input
conditions (At=At,,,,, ), there may be three possible out-
comes, each with a specific probability. That is, the general
equation for the fixed delay change example of stochastic
delay plasticity may be given by:

—D; with probability pa(AD (15)
pi(An)

1 = [pi(Ar) + pg(AD)]

8(Ar) =< Dy with probability

05 with probability

In one aspect, stochastic delay plasticity may be based on
the functional form of the delay plasticity curves p(At) and
p,(At), where i=increasing and d=decreasing. D is the fixed
amount of delay change, which in this aspect, may be selected
to be 1. Although the delay has been selected to be 1, this is
merely exemplary and not limiting. Notably, the delay may be
locally updated on a time step basis, as opposed to being
globally applied thereby enabling more efficient updates and
improved network performance.
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In some aspects, the stochastic delay plasticity may be
based on piece-wise linear curves. For example, in one aspect,
the equations of the piece-wise linear probability curves may
be expressed as follows:

M AL+ biy, A= Algapie (16)

pi(An) ={

mi_Ar+ b, Ar < Argeple

—my At + by, A= Algge (1n
pa(AD) =
—mg_Ar + by, Ar < Argape
where m,,, m, , m,, and m, are the slopes of the piece

wise linear curves, b,,, b,_, b,, and b,_ are the curve
intercepts, and At is the difference between the presyn-
aptic spike and the postsynaptic spike.

For each curve, there are two slopes (m,, and m,_or m,,
and m, ) and two intercepts (b,, andb,_orb,, andb, ), which
are separated at a point At_,, ... In some aspects, At, .. is a
point at which the slopes and intercepts change. At,,,,, may
define an optimally stable post-pre spike time difference.
Because these curves represent probabilities, their ranges
may be fixed between 0 and 1 and the domain may be set by
the expected length of the pattern (e.g., 50 ms).

In terms of stochastic delay plasticity design, a set of
parameters may be adjusted to control aspects of the opera-
tion of the neural network. For example, in some aspects, the
parameters may include:

(1) The sign of the slopes, which may define model behav-

ior,

(2) The relative magnitude of the slopes, which may con-

trol convergence,

(3) The intercepts, which may control volatility, and
(4) The stable point (At,,,,,;.) and stable region, which may

control noise performance.

Of course, this list is not exhaustive and other parameters
may also be considered. Further, while these considerations/
parameters may be inter-related, they may also be unrelated,
and accordingly, the effect of each parameter may be related
to the aspect that is to be controlled.

Signs of the Slopes

In one aspect, the slopes of p (At) (e.g., m,, and m ; ) may
both be negative and the slopes of p,(At) (e.g., m,, and m, )
may both be positive. The reason for this can be seen by
considering each segment of the curve separately. For
example, with the p,(At) curve when AtzAt,,,,., the postsyn-
aptic spike may occur after the presynaptic spike and it may
be desirable to move the pre spike closer to the post spike.
That is, it may be desirable to have a higher probability of
increasing the synaptic delay than decreasing the synaptic
delay. Furthermore, as the At increases, there may be more
confidence in the desirability of increasing the delay and so
the probability of increasing the delay may be increased. This
may result in a positive slope (my,,). Similarly, the p(At)
curve may have a negative slope (m,_) when At=At, ;..

For the p(At) curve, when AtzAt, ;.. the postsynaptic
spike may occur after the presynaptic spike, and as the time
difference increases, confidence regarding desirability of
increasing the delay may also increase. In some aspects, this
may be equivalent to being more confident of not decreasing
the delay, and so it may be desirable to lower the probability
of'decreasing the delay, resulting in a negative slope (m,, ) for
p{At). Similarly, the p,(At) curve may have a negative slope
(m,_) when At=At, ...
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Relative Magnitudes of the Slopes

In some aspects, the values of the slopes may indicate how
likely it is that the delay will change as the absolute value of
(At-At,,,,;.) increases, and hence the rate of convergence. For
example, consider the case of a presynaptic spike that occurs
40 ms before the postsynaptic spike. Initially, the synapse
between this pair may have a high probability of receiving a
delay increase, moving the timing of the presynaptic spike
closer to the timing of the postsynaptic spike. This may tend
to move the synapse’s delay towards the appropriate value at
a faster rate than synapses whose pre-post pairs are more
closely aligned. By bringing the farthest presynaptic spikes
toward the postsynaptic spike faster than the closest presyn-
aptic spikes, they may all reach a similar value faster than if
each presynaptic spike was moved at the same rate.
Intercept Magnitudes

In some aspects, the intercept magnitudes may define an
overall probability of changing the delay. For constant slopes
(e.g., m,,, m, , m,, and m, ), as the intercept (e.g., b,,, b,_,
b, and b, ) increases, the quantity p,(At)+p(At) may
increase. In turn, the delays may be more likely to change on
average, resulting in increased volatility. If the model is more
likely to change the delay, then this may result in faster, but
less reliable convergence, or may prevent convergence by
causing highly variable delays. For example, if the intercepts
were set so high that p,(At)+p {At)>p,(At) for all At, then the
likelihood of changing the delay may be higher than the
likelihood of keeping the delay the same and the convergence
may be poor. Accordingly, it may be desirable to generate the
intercepts in the current temporal learning model such that
p(AD+p (At)<p,(At) for all At.

Additionally, in this example, there are four intercepts in
the current model specification and their values could poten-
tially be different. In general, it may be desirable to have
b, >b,, and b, >b, to ensure that the probability of decreas-
ing the delay may be higherto the left of At,, ... Ifb,,=b,_and
b, =b,_, then py(At) may form a triangular function with no
sharp discontinuities. However, if b,,=b,_ or b, =b,_, then
there may be a sharp discontinuity at At,,,,.. One reason to
induce such a discontinuity may be to have a difference in
volatility between the regions to the left and right of At ,,..
One reason to have this change in volatility may be to have the
stable region (to the left of At,,,,.) be less volatile than the
region to the right, which could potentially speed up conver-
gence.

Stable Point and Region

The point at which the slopes and intercepts change is
defined to be the most stable post-pre time difference, At,,,, ;..
In some aspects, At ,,, may be defined as the point at which
p(At)+p(At) is smallest. As such, the probability of not
changing the synaptic delay may be the greatest. Because the
probability of not changing the delay is not equal to one at this
point, the synaptic delay may oscillate around the final delay
value.

Furthermore, the intersection point of p,(At) and p(At)
may define a point at which the probability of decreasing the
delay is always greater than the probability of increasing the
delay. Because the delay can never reduce below one, the
region to the left of the intersection point is the stable region
for the model. When designing the curves, one should choose
the intersection point based on the expected noise in the
pattern. For example, if the intersection point is set at 1 ms,
then each pre spike would occur exactly one time-step before
the post spike to maintain stability. Otherwise, the At may fall
to the right of the intersection point (see e.g., 908 of FIG. 9)
and the delays will increase by one, which can force the post
spike to occur later if the weights of those synapses are high.
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If there is no noise in the pre spike times from trial to trial,
At=1 may be an acceptable intersection point. However, if it is
known that the pre-spike times have a likely noise of +3 ms,
then At,,,,,. should be set to 1 and the intersection point set At
greater than 3 to ensure that once the delays are reduced/
minimized, increasing the delay will remain unlikely and the
delays will remain stable.

In summary, while the slopes, intercepts and stable point
are all related, they each have a primary function and the
design of the parameter values can be constrained by this
primary function.

FIG. 5 illustrates an example implementation 500 of the
aforementioned operating a neural network using a general-
purpose processor 502 in accordance with certain aspects of
the present disclosure. Variables (neural signals), synaptic
weights, system parameters associated with a computational
network (neural network), delays, and frequency bin infor-
mation may be stored in a memory block 504, while instruc-
tions executed at the general-purpose processor 502 may be
loaded from a program memory 506. In an aspect of the
present disclosure, the instructions loaded into the general-
purpose processor 502 may comprise code for monitoring a
timing of a presynaptic spike, monitoring a timing of a
postsynaptic spike, determining a time difference between
the postsynaptic spike and the presynaptic spike, and/or cal-
culating a stochastic update of a synapse’s delay based on the
time difference.

FIG. 6 illustrates an example implementation 600 of the
aforementioned operating a neural network where a memory
602 can be interfaced via an interconnection network 604
with individual (distributed) processing units (neural proces-
sors) 606 of a computational network (neural network) in
accordance with certain aspects of the present disclosure.
Variables (neural signals), synaptic weights, system param-
eters associated with the computational network (neural net-
work) delays, and frequency bin information may be stored in
the memory 602, and may be loaded from the memory 602 via
connection(s) of the interconnection network 604 into each
processing unit (neural processor) 606. In an aspect of the
present disclosure, the processing unit 606 may be configured
to monitor a timing of a presynaptic spike, monitor a timing of
apostsynaptic spike, determine a time difference between the
postsynaptic spike and the presynaptic spike, and/or calculate
a stochastic update of a synapse’s delay based on the time
difference.

FIG. 7 illustrates an example implementation 700 of the
aforementioned operating a neural network. As illustrated in
FIG. 7, one memory bank 702 may be directly interfaced with
one processing unit 704 of a computational network (neural
network). Each memory bank 702 may store variables (neural
signals), synaptic weights, and/or system parameters associ-
ated with a corresponding processing unit (neural processor)
704 delays, and frequency bin information. In an aspect of the
present disclosure, the processing unit 704 may be configured
to monitor a timing of a presynaptic spike, monitor a timing of
apostsynaptic spike, determine a time difference between the
postsynaptic spike and the presynaptic spike, and/or calculate
a stochastic update of a synapse’s delay based on the time
difference.

FIG. 8 illustrates an example implementation of a neural
network 800 in accordance with certain aspects of the present
disclosure. As illustrated in FIG. 8, the neural network 800
may have multiple local processing units 802 that may per-
form various operations of methods described herein. Each
local processing unit 802 may comprise a local state memory
804 and a local parameter memory 806 that store parameters
of the neural network. In addition, the local processing unit
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802 may have a local (neuron) model program (LMP)
memory 808 for storing a local model program, a local learn-
ing program (LLP) memory 810 for storing a local learning
program, and a local connection memory 812. Furthermore,
as illustrated in FIG. 8, each local processing unit 802 may be
interfaced with a configuration processing unit 814 for pro-
viding configurations for local memories of the local process-
ing unit, and with a routing connection processing unit 816
that provide routing between the local processing units 802.

The neuron model includes a means for monitoring a tim-
ing of a presynaptic spike, means for monitoring a postsyn-
aptic spike, determining means and calculating means. In one
aspect, the means for monitoring a timing of a presynaptic
spike, means for monitoring a postsynaptic spike, determin-
ing means and/or calculating means may be the general-
purpose processor 502, program memory 506, memory block
504, memory 602, interconnection network 604, processing
units 606, processing unit 704, local processing units 802, and
or the routing connection processing units 816 configured to
perform the functions recited. In another configuration, the
aforementioned means may be any module or any apparatus
configured to perform the functions recited by the aforemen-
tioned means.

According to certain aspects of the present disclosure, each
local processing unit 802 may be configured to determine
parameters of the neural network based upon desired one or
more functional features of the neural network, and develop
the one or more functional features towards the desired func-
tional features as the determined parameters are further
adapted, tuned and updated.

FIGS. 9A-9B show diagrams 900 and 950 illustrating
exemplary stochastic delay plasticity curves in accordance
with aspects of the present disclosure. Referring to FIG. 9A,
afirst curve 902 indicates a probability of increasing the delay
by one (e.g., p,(At)). A second curve 904 indicates a probabil-
ity of decreasing the delay by one (e.g., p (At)). The first curve
902 and the second curve 904 may respectively be given by
Equations 16 and 17 described above. Although, these curves
are in the form of piecewise linear curves, this is merely
exemplary, and any form of curve such as a higher order
polynomial or a piecewise constant, for example, may alter-
natively be used. Furthermore, a lookup table may also be
used in place of the piecewise linear curves.

A stable point (At,,,;.) 906 is also shown. The stable point
906 corresponds to the most stable post-pre time difference.
The stable point At,,,,,, may be defined as the point at which
the delay is least likely to be changed (i.e., point at which the
probability of not changing is the highest). For example, as
shown, in FIG. 9A, At_, . .. is the point at which p,(At)+p (At)
is smallest and hence the probability of not changing the
synaptic delay is greatest.

An intersection point 908 is shown as the intersection of the
stochastic plasticity curves 902 and 904. For ease of illustra-
tion, a scaled version (910) of diagram 900 is included to
more clearly show the stable point At ., ;. and the intersection
point 908. The intersection point 908 may define a point at
which a probability of decreasing the delay is always greater
than a probability of increasing the delay. In the example of
FIG. 9A, because the delay may not reduce below one, the
region to the left of the intersection point 908 may define a
stable region for the model.

In some aspects, it may be desirable to select the intersec-
tion point based on an expected noise in the pattern. For
example, if the intersection point were set at 1 ms, then each
pre spike would occur exactly one time-step before the post
spike to maintain stability. Otherwise, the At may fall to the
right of the intersection point and the delays may increase by
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one, which may force the post spike to occur later if the
weights of the subject synapses are high.

FIG. 9B is a diagram 950 that illustrates stochastic delay
plasticity curves 952, 954,958 and 960. Referring to FIG. 9B,
curve 952 shows the probability of increasing the delay by 1,
while curve 954 indicates the probability of decreasing the
delay by 1. The third curve 958 indicates the probability of
making no change and the probability of making a change.
The fourth curve 960 indicates the probability of making any
change. In this exemplary diagram, At,,,,,. 956 may define a
minimum of the probability of making a change and the
maximum probability of making no change.

FIG. 10 illustrates a method 1000 for operating a neural
network. In block 1002, the neuron model monitors a timing
of a presynaptic spike. In block 1004, the neuron model
monitors a timing of a postsynaptic spike. In block 1006, the
neuron model determines a time difference between the
postsynaptic spike and the presynaptic spike. Furthermore, in
block 1008, the neuron model calculates a stochastic update
of a synapse’s delay based on the time difference.

The various operations of methods described above may be
performed by any suitable means capable of performing the
corresponding functions. The means may include various
hardware and/or software component(s) and/or module(s),
including, but not limited to, a circuit, an application specific
integrated circuit (ASIC), or processor. Generally, where
there are operations illustrated in the figures, those operations
may have corresponding counterpart means-plus-function
components with similar numbering.

As used herein, the term “determining” encompasses a
wide variety of actions. For example, “determining” may
include calculating, computing, processing, deriving, inves-
tigating, looking up (e.g., looking up in a table, a database or
another data structure), ascertaining and the like. Addition-
ally, “determining” may include receiving (e.g., receiving
information), accessing (e.g., accessing data in a memory)
and the like. Furthermore, “determining” may include resolv-
ing, selecting, choosing, establishing and the like.

As used herein, a phrase referring to “at least one of” a list
of items refers to any combination of those items, including
single members. As an example, “at least one of: a, b, or ¢’ is
intended to cover: a, b, ¢, a-b, a-c, b-c, and a-b-c.

The various illustrative logical blocks, modules and cir-
cuits described in connection with the present disclosure may
be implemented or performed with a general purpose proces-
sor, a digital signal processor (DSP), an application specific
integrated circuit (ASIC), a field programmable gate array
signal (FPGA) or other programmable logic device (PLD),
discrete gate or transistor logic, discrete hardware compo-
nents or any combination thereof designed to perform the
functions described herein. A general-purpose processor may
be a microprocessor, but in the alternative, the processor may
be any commercially available processor, controller, micro-
controller or state machine. A processor may also be imple-
mented as a combination of computing devices, e.g., a com-
bination of a DSP and a microprocessor, a plurality of
microprocessors, one or more MiCroprocessors in conjunc-
tion with a DSP core, or any other such configuration.

The steps of amethod or algorithm described in connection
with the present disclosure may be embodied directly in hard-
ware, in a software module executed by a processor, or in a
combination of the two. A software module may reside in any
form of storage medium that is known in the art. Some
examples of storage media that may be used include random
access memory (RAM), read only memory (ROM), flash
memory, erasable programmable read-only memory
(EPROM), electrically erasable programmable read-only
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memory (EEPROM), registers, a hard disk, a removable disk,
a CD-ROM and so forth. A software module may comprise a
single instruction, or many instructions, and may be distrib-
uted over several different code segments, among different
programs, and across multiple storage media. A storage
medium may be coupled to a processor such that the proces-
sor can read information from, and write information to, the
storage medium. In the alternative, the storage medium may
be integral to the processor.

The methods disclosed herein comprise one or more steps
or actions for achieving the described method. The method
steps and/or actions may be interchanged with one another
without departing from the scope of the claims. In other
words, unless a specific order of steps or actions is specified,
the order and/or use of specific steps and/or actions may be
modified without departing from the scope of the claims.

The functions described herein may be implemented in
hardware, software, firmware, or any combination thereof. If
implemented in hardware, an example hardware configura-
tion may comprise a processing system in a device. The
processing system may be implemented with a bus architec-
ture. The bus may include any number of interconnecting
buses and bridges depending on the specific application of the
processing system and the overall design constraints. The bus
may link together various circuits including a processor,
machine-readable media, and a bus interface. The bus inter-
face may be used to connect a network adapter, among other
things, to the processing system via the bus. The network
adapter may be used to implement signal processing func-
tions. For certain aspects, a user interface (e.g., keypad, dis-
play, mouse, joystick, etc.) may also be connected to the bus.
The bus may also link various other circuits such as timing
sources, peripherals, voltage regulators, power management
circuits, and the like, which are well known in the art, and
therefore, will not be described any further.

The processor may be responsible for managing the bus
and general processing, including the execution of software
stored on the machine-readable media. The processor may be
implemented with one or more general-purpose and/or spe-
cial-purpose processors. Examples include microprocessors,
microcontrollers, DSP processors, and other circuitry that can
execute software. Software shall be construed broadly to
mean instructions, data, or any combination thereof, whether
referred to as software, firmware, middleware, microcode,
hardware description language, or otherwise. Machine-read-
able media may include, by way of example, random access
memory (RAM), flash memory, read only memory (ROM),
programmable read-only memory (PROM), erasable pro-
grammable read-only memory (EPROM), electrically eras-
able programmable Read-only memory (EEPROM), regis-
ters, magnetic disks, optical disks, hard drives, or any other
suitable storage medium, or any combination thereof. The
machine-readable media may be embodied in a computer-
program product. The computer-program product may com-
prise packaging materials.

In a hardware implementation, the machine-readable
media may be part of the processing system separate from the
processor. However, as those skilled in the art will readily
appreciate, the machine-readable media, or any portion
thereof, may be external to the processing system. By way of
example, the machine-readable media may include a trans-
mission line, a carrier wave modulated by data, and/or a
computer product separate from the device, all which may be
accessed by the processor through the bus interface. Alterna-
tively, or in addition, the machine-readable media, or any
portion thereof, may be integrated into the processor, such as
the case may be with cache and/or general register files.
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Although the various components discussed may be
described as having a specific location, such as a local com-
ponent, they may also be configured in various ways, such as
certain components being configured as part of a distributed
computing system.

The processing system may be configured as a general-
purpose processing system with one or more microprocessors
providing the processor functionality and external memory
providing at least a portion of the machine-readable media, all
linked together with other supporting circuitry through an
external bus architecture. Alternatively, the processing sys-
tem may comprise one or more neuromorphic processors for
implementing the neuron models and models of neural sys-
tems described herein. As another alternative, the processing
system may be implemented with an application specific
integrated circuit (ASIC) with the processor, the bus inter-
face, the user interface, supporting circuitry, and at least a
portion of the machine-readable media integrated into a
single chip, or with one or more field programmable gate
arrays (FPGAs), programmable logic devices (PLDs), con-
trollers, state machines, gated logic, discrete hardware com-
ponents, or any other suitable circuitry, or any combination of
circuits that can perform the various functionality described
throughout this disclosure. Those skilled in the art will rec-
ognize how best to implement the described functionality for
the processing system depending on the particular application
and the overall design constraints imposed on the overall
system.

The machine-readable media may comprise a number of
software modules. The software modules include instructions
that, when executed by the processor, cause the processing
system to perform various functions. The software modules
may include a transmission module and a receiving module.
Each software module may reside in a single storage device or
be distributed across multiple storage devices. By way of
example, a software module may be loaded into RAM from a
hard drive when a triggering event occurs. During execution
of the software module, the processor may load some of the
instructions into cache to increase access speed. One or more
cache lines may then be loaded into a general register file for
execution by the processor. When referring to the functional-
ity of a software module below, it will be understood that such
functionality is implemented by the processor when execut-
ing instructions from that software module.

If implemented in software, the functions may be stored or
transmitted over as one or more instructions or code on a
computer-readable medium. Computer-readable media
include both computer storage media and communication
media including any medium that facilitates transfer of a
computer program from one place to another. A storage
medium may be any available medium that can be accessed
by a computer. By way of example, and not limitation, such
computer-readable media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage or other magnetic storage devices, or any other
medium that can be used to carry or store desired program
code in the form of instructions or data structures and that can
be accessed by a computer. In addition, any connection is
properly termed a computer-readable medium. For example,
if the software is transmitted from a website, server, or other
remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies
such as infrared (IR), radio, and microwave, then the coaxial
cable, fiber optic cable, twisted pair, DSL, or wireless tech-
nologies such as infrared, radio, and microwave are included
in the definition of medium. Disk and disc, as used herein,
include compact disc (CD), laser disc, optical disc, digital
versatile disc (DVD), floppy disk, and Blu-Ray® disc where
disks usually reproduce data magnetically, while discs repro-
duce data optically with lasers. Thus, in some aspects com-
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puter-readable media may comprise non-transitory com-
puter-readable media (e.g., tangible media). In addition, for
other aspects computer-readable media may comprise transi-
tory computer-readable media (e.g., a signal). Combinations
of the above should also be included within the scope of
computer-readable media.

Thus, certain aspects may comprise a computer program
product for performing the operations presented herein. For
example, such a computer program product may comprise a
computer-readable medium having instructions stored (and/
or encoded) thereon, the instructions being executable by one
or more processors to perform the operations described
herein. For certain aspects, the computer program product
may include packaging material.

Further, it should be appreciated that modules and/or other
appropriate means for performing the methods and tech-
niques described herein can be downloaded and/or otherwise
obtained by a user terminal and/or base station as applicable.
For example, such a device can be coupled to a server to
facilitate the transfer of means for performing the methods
described herein. Alternatively, various methods described
herein can be provided via storage means (e.g., RAM, ROM,
a physical storage medium such as a compact disc (CD) or
floppy disk, etc.), such that a user terminal and/or base station
can obtain the various methods upon coupling or providing
the storage means to the device. Moreover, any other suitable
technique for providing the methods and techniques
described herein to a device can be utilized.

It is to be understood that the claims are not limited to the
precise configuration and components illustrated above. Vari-
ous modifications, changes and variations may be made in the
arrangement, operation and details of the methods and appa-
ratus described above without departing from the scope of the
claims.

What is claimed is:

1. A method of operating a spiking neural network having
a plurality of neurons coupled together with at least one
synapse, comprising:

monitoring a timing of a presynaptic spike;

monitoring a timing of a postsynaptic spike;

determining a time difference between the postsynaptic

spike and the presynaptic spike; and

calculating a stochastic update of a delay for the at least one

synapse based at least in part on the time difference.

2. The method of claim 1, in which the stochastic update is
based at least in part on an evaluation of a probability func-
tion.

3. The method of claim 2, in which the probability function
is based at least in part on an increase in the delay.

4. The method of claim 2, in which the probability function
is based at least in part on a decrease in the delay.

5. The method of claim 2, in which at least one region of a
probability distribution is parameterized.

6. The method of claim 2, in which the probability function
is piecewise linear.

7. The method of claim 1, in which the update is based at
least in part on a look up table.

8. The method of claim 1, in which the update is based at
least in part on a calculation.

9. An apparatus for operating a spiking neural network
having a plurality of neurons coupled together with at least
one synapse, comprising:

a memory; and

at least one processor coupled to the memory, the at least

one processor being configured:

to monitor a timing of a presynaptic spike;

to monitor a timing of a postsynaptic spike;

to determine a time difference between the postsynaptic

spike and the presynaptic spike; and
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to calculate a stochastic update of a delay for the at least

one synapse based at least in part on the time difference.

10. The apparatus of claim 9, in which the at least one
processor is configured to calculate the stochastic update
based at least in part on an evaluation of a probability func-
tion.

11. The apparatus of claim 10, in which the probability
function is based at least in part on an increase in the delay.

12. The apparatus of claim 10, in which the probability
function is based at least in part on a decrease in the delay.

13. The apparatus of claim 10, in which at least one region
of a probability distribution is parameterized.

14. The apparatus of claim 10, in which the probability
function is piecewise linear.

15. The apparatus of claim 9, in which the at least one
processor is configured to calculate the stochastic update
based at least in part on a look up table.

16. The apparatus of claim 9, in which the at least one
processor is configured to calculate the stochastic update
based at least in part on a calculation.

17. An apparatus for operating a spiking neural network
having a plurality of neurons coupled together with at least
one synapse, comprising:

means for monitoring a timing of a presynaptic spike;

means for monitoring a timing of a postsynaptic spike;

means for determining a time difference between the
postsynaptic spike and the presynaptic spike; and

means for calculating a stochastic update of a delay for the
at least one synapse based at least in part on the time
difference.
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18. The apparatus of claim 17, in which the means for
calculating the stochastic update calculates the stochastic
update based at least in part on an evaluation of a probability
function.

19. The apparatus of claim 18, in which the probability
function is based at least in part on an increase in the delay.

20. The apparatus of claim 18, in which the probability
function is based at least in part on a decrease in the delay.

21. The apparatus of claim 18, in which at least one region
of a probability distribution is parameterized.

22. The apparatus of claim 18, in which the probability
function is piecewise linear.

23. The apparatus of claim 17, in which the means for
calculating the stochastic update calculates the stochastic
update based at least in part on a look up table.

24. The apparatus of claim 17, in which the means for
calculating the stochastic update calculates the stochastic
update based at least in part on a calculation.

25. A computer program product, comprising:

a non-transitory computer readable medium have encoded

thereon program code, the program code comprising:
program code to monitor a timing of a presynaptic spike;
program code to monitor a timing of a postsynaptic spike;
program code to determine a time difference between the
postsynaptic spike and the presynaptic spike; and
program code to calculate a stochastic update of a delay for
at least one synapse based at least in part on the time
difference.



